TOPIC	OBJECTIVES
Introduction to Instrumentation	 Discuss the evolution and importance of process instrumentation to the process industries. Explain the importance of monitoring process variables. Discuss the operator's leadership role, in relation to safety, when monitoring process variables. Explain the importance of process instrumentation to a process technician: Eyes and ears of the process instrumentation to a process technician: Eyes and ears of the process technician of the process control Effective communications with instrument technician for troubleshooting and repairs Define terms associated with instrument technician for troubleshooting and repairs Define terms associated with instrumentation: local remote indicating recording process variables controlling analog digital PLC (Programmable Logic Control) optic (Programmable Logic Control) glit range Describe the major process variables controlled in the process industries and define their units of measurement:

TOPIC	OBJECTIVES
Process Variables, Elements and Instruments - Pressure	 Define units of measurement associated with pressure and pressure instruments: PSIG (pounds per square inch gauge) PSIA (pounds per square inch atmospheric) bars Inches H₂O Inches H₂O Inches Hg (mercury) mm Hg Abs Inches Hg Vac atmospheres Discuss the formula used to calculate pressure and identify the three components that affect the force exerted by molecules: Speed (temperature) number of molecules mass (liquid) Identify common types of pressure-sensing/measuring instruments used in the process industries: gauges differential pressure cells manometers strain gauge Describe the purpose and operation of pressure-sensing/measuring instruments used in industrial settings. Given a standard calculator and conversion formulas convert between the following pressure scales:

Торіс	Objectives
Topic Process Variables, Elements and Instruments – Temperature	 Define units of measure associated with temperature and temperature instruments: differential (delta) temperature scales Fahrenheit Celsius/Centigrade Describe the effect heat energy has on the movement of molecules. Identify common types of temperature-sensing/measurement devices used in the process industries: resistance temperature detector (RTD) thermometer thermocouple temperature gauge bimetallic strip
	process industries. 5. Given a standard calculator and conversion formulas, complete Fahrenheit and Celsius conversion
Process Variables, Elements and Instruments - Level	 Define terms associated with level and level instruments: ullage (outage) innage interface level direct/indirect measurement meniscus Identify common types, purposes, and operation of level-sensing/measuring devices used in the process industries: gauge/sight-glass (reflex or clear glass) differential pressure cells floats displacer bubblers nuclear devices tage/ball radar Discuss hydrostatic head pressure in relation to level measurement. Describe the level control as it relates to the temperature, density, and volume of liquid.

TOPIC	OBJECTIVES
Process Variables, Elements and Instruments – Flow	 Define terms associated with flow and flow measuring instruments: fluids (gases and liquids) metered displacement laminar turbulent differential pressure weight/mass measurement Identify the most common types of flow-sensing and measuring devices used in the process industries and their purposes and operation: orfice plate venturi tube flow nozzle pitot tube multiport pitot tube (Annubar) rotameters magmeter uurbine meters vans flow meter (Coriolis) vortex meter others Describe the purpose and operation of flow-sensing/measurement devices used in process industries. Explain the difference between mass flow and volume flow.

TOPIC	OBJECTIVES
Process Variables, Elements and Instruments – Analytical	 Define terms associated with analytical instruments: pH (acid/base) and ORP (oxidation reduction potential) conductivity Optical Measurements Chromatography Combustion TOC (total organic carbon) Identify the most common types of analytical devices used in the process industries: gas/liquid chromatograph ORP (oxidation reduction potential)/ pH meter conductivity meter Color analyzers optical analyzer/meter opacity analyzer/meter TOC (total organic carbon) analyzer spectrophotometers

TOPIC	OBJECTIVES
Miscellaneous Measuring Devices	 Define terms associated with miscellaneous measuring devices: load cells density vibration rotational speed amperage decibels Identify common types of miscellaneous measuring devices: Vibration meter load cells proximity sensors (pickups for speed) Amp meters. decibel meters, etc.
Introduction to Control Loops (Simple Loop Theory)	 Explain the function of a control loop. Describe process control loop elements: Process Variables (PV) measuring means (primary element/transmitter) controller (set point) final control element (valve or louvers) Explain signal transmission: Pneumatic Electronic analog Discrete Digital mechanical Classify the functions of a control scheme: Sensing Measuring comparing transducing (converting) controlling Review the differences between "open" and "closed" control loops. Explain the purpose of instrument air systems.

TOPIC	OBJECTIVES
	 7. Describe the various types of instrument air systems: Instrument air Nitrogen Process gases
Control Loops: Controllers	 Explain the terms associated with controllers: direct acting reverse acting reverse acting set point auto/manual switch local/remote switch tuning

TOPIC	OBJECTIVES
Control Loops: Primary Sensors, Transmitters, and Transducers	 Explain the function of measuring instruments (pressure, temperature, level, and flow) and review their role in the overall control loop process. Explain the purpose and operation of the transmitter (D/P Cell) in a control loop. Compare and contrast the transmitter input and output signals (communication). Discuss differential pressure cell (D/P) in relation to the transmitter signal. Explain the function of a transducer (signal converter): I (current) to P (pneumatic) P (pneumatic) to I (current) Compare and contrast the relationship between air (3 psig to 15 psig) and electric signals (4 ma to 20 ma). Given an example of a process control scheme, demonstrate how a control loop functions.
Switches, Relays, Alarms	 Explain the purpose and function of a switch. Explain the purpose and function of a relay. Explain the purpose and function of an alarm. Review placement and use of a switch within a control loop (open and closed). Review the placement and use of a relay within a control loop (open and closed) and in a process unit. Review the placement and use of an alarm within a control loop (open and closed) and in a process unit. Review the placement and use of an alarm within a control loop (open and closed) and in a process unit. Identify switches, relays, and alarms on a Piping & Instrumentation Diagram.
Instrument Air Systems	 Discuss potential causes of instrument air failure: Compressor shuts down Wet/dew point (dryers) Plugging (scale, rust) Backup air failure Regulator failure Incorrect manifold alignment Discuss corrective actions for each of the following scenarios: Compressor shut down Wet (dew point) Plugging Backup air failure Regulator failure Incorrect manifold alignment

TOPIC	OBJECTIVES
Control Valves and Final Control Elements	 Explain the purpose and operation of the following: control valves three-way valve gate valve globe valve (needle valve) butterfly valve

ΤΟΡΙϹ	OBJECTIVES
	 2. Explain the purpose and operation of the following: valve positioner manual operation (hand-jack) transducer (converter) 3. Define terms associated with valves and other final control elements: "air to open" (fail colsed) fail last/in-place/as is double-acting diaphragm valve actuator double-acting diaphragm valve actuator solenoid variable speed motor 4. Given a drawing or actual device, identify the main components of a control valve: Body Bonnet Disc Actuator Stem Seat Spring Valve positioner Hand-jack 5. Illustrate three types of final control elements and provide an application for each type: control valve – manipulates an air flow to control draft setting or temperature setting motor – start, stop or variable speed in response to a control signal darwing or actual instrument, identify and describe the operation of the following: instrument air regulator louver, damper, final control element variable speed motor element

TOPIC	OBJECTIVES
	 Valve stroke Direct versus indirect action Incorrect air supply pressure / contamination Sticking valve Transducer operation Review actions for troubleshooting the items in number 7. Compare and contrast a spring and diaphragm actuator to a cylinder actuator. Explain the purpose of a valve positioner and describe its operation. Review the function of each of the three gauges located on a pneumatic valve positioner: Air supply Signal Output signal to actuator 13. Given a signal pressure from an I/P determine what the valve position should be for the following: Fail open Fail closed
Interlocks and Safety Features	 Explain the purpose of interlocks: Safety Process Review the purpose of safety features: Interlocks and valve actions ESD (Emergency Shutdown Devices) Limit switches (proximity, permissive) Redundant instrumentation Fail safe position Overspeed Discuss potential consequences for bypassing or ignoring any of the safety features listed above.
Symbology; Process Diagrams – Part 1	 Review the types of drawings that contain instrumentation that an operator might use. Explain the lettering and numbering standards based on ISA (Instrumentation Society of Automation) instrumentation symbols. (Legend) Demonstrate how to determine the instrument type from the symbol information. Draw the standards for instrument line symbols: Electrical Pneumatic Digital Using a legend, correctly identify instrumentation on a drawing.

TOPIC	OBJECTIVES
Process Diagrams – Part 2	 Compare and contrast P&IDs and PFDs. Given a PFD, trace process flows on the drawing and/or in the field locating major equipment. Given a P&ID with a legend, locate and identify the components:
Instrumentation Sketching	 Given a P&ID, with a control loop, explain the relationship of one piece of instrumentation to another. Given a process flow diagram of a major system, illustrate/draw control loops for the following variables: Flow Level Temperature Pressure Using training resources (process simulator, training unit, etc.) sketch instrumentation control loops.
Monitoring Process Variables	1. Given a P&ID identify key process variables that should be monitored.
Instrumentation Troubleshooting	 Review the extent of an operator's role when troubleshooting problems with process instruments (i.e., identify and not repair, which may vary between sites). Discuss hazards and consequences of deviation for operating outside normal control range of process variables. Identify typical malfunctions found in primary sensing elements and transmitters. Explain the importance of process knowledge in troubleshooting. Illustrate the proper use of equipment related to process troubleshooting. Discuss safety and environmental issues related to troubleshooting process instruments. Describe the symptoms of incorrect instrument calibration: Variation between local sight glass and level transmitter Inconsistency among instruments How do process changes affect accurate measurement? Flow rate Density/specific gravity (composition) Temperature Pressure Given a scenario, demonstrate proactive action for correcting an abnormal process variable. Given a simulator or actual device, determine whether a control loop is in or out of control and identify the information used to make the decision.