Overview 1. Discuss why we need to troubleshoot.	
Murphy's Law	
Brainstorm and identify things that could go wrong within a process.	
Define proactive and reactive and give examples of each.	
Discuss the consequences of proactive and reactive.	
Safety and health	
Process upset	
Equipment damage	
Environmental compliance issues	
Downtime	
Loss of production	
Financial impact	
Monitoring 1. Discuss the importance of monitoring instruments and equipment as it relates to troubleshooting	
Instruments and 2. Discuss ways monitoring instruments and equipment will aid in troubleshooting a process	
Equipment 3. Discuss instrument indicators when a process is operating abnormally	
Process variables	
Alarms	
Controller output	
Trends	
4. Discuss equipment indicators when a process is operating abnormally	
Pressures (pump suction/discharge)	
Differential pressure (across filters)	
Leaks	
Abnormal sounds	
Abnormal temperatures	
Abnormal vibrations	
Abnormal smells	
Cavitation of a nump	
 Cavitation of a pump Surging on a compressor, etc. 	
• Surging on a compressor, etc.	
Relationships 1 Discuss the basic parts of a control loop and how they relay information	
between Equipment 2. Discuss how failure of one instrument in a control loop would affect another	
and Instruments 3. Discuss how a control loop will respond to change in set point	
4 Discuss how a control loop will respond to an upset such as	
Loss of pump	
• Loss of instrument air	
Plugged filter	
Steam tran failure	

TOPIC	OBJECTIVES
	Fouled exchanger
	Power failure
	Discuss how instrument or equipment failure may affect systems.
	a. Loss of a reflux pump on a distillation column
	b. Level indicator on a condensate pot
	c. Control valve failure on a feed line to a reactor
	d. Loss of temperature indication on a reactor
Relationships	1. Discuss the domino effect among interrelated systems (i.e., how one system affects another)
between Systems	a. Product of one system is feed stock for the next
	b. I hermal interconnectivity (i.e., hot fluid from one system used to preheat feed to another)
	2. Given a scenario, explain how a problem in one system can affect other systems:
	Reformer in a refinery provides hydrogen for other processes
	 Reactors producing a mixture of products that need to be separated by distillation (feed composition change)
	Heat from reactor product stream used in a waste heat boiler to generate steam
Troubleshooting	1. Given a process scenario, use tools provided to explain how each would be used in troubleshooting a problem
Tools	Process Flow diagrams
	Process & Instrument Diagrams
	Material balance
	Statistical Process Control charts
	Historical trends
	Energy balance
	Lab analysis / on-stream analyzers
	 How instruments, equipment and systems inter-relate
	Field verification
	 Hand-held devices such as temperature sensors, vibration monitors, etc.
	Baseline information
	Operating procedures/training manuals
	Engineering and equipment specifications
	Cause and Effect diagram
	a. What is it supposed to do
	b. What is it doing
	c. What would cause it to do what it is doing
Troubleshooting	1. Identify and document the symptoms of a problem:
Steps	Recognize normal conditions
	Recognize abnormal conditions
	Collect and document applicable data
	 Identify potential problems and the magnitude and urgency of the problem based on the data collected

TOPIC	OBJECTIVES
	2. Communicate the problem
	Determine what communication is needed
	 Discuss with team members to help troubleshoot the problem and identify the possible causes
	2 Identify the most likely equal:
	5. Identity the most likely cause.
	 Emminate causes that do not int the data Evaluate and prioritize remaining possible causes
	 Evaluate and phontize remaining possible causes Determine the most likely causes(s)
	4 Collect additional data to confirm most likely cause
	5. Develop a plan to take corrective action(s) based on priorities
	 Short-term solution (compensating action to keep plant/unit running)
	Intermediate term solution (temporary action to prevent extended downtime)
	Long-term solution (action to eliminate problem(s))
	6. Document incident
	Upset
	Troubleshooting steps
	Corrective action(s)
	Cause
Troubleshooting	1. Apply troubleshooting steps to an everyday problem (for example, car engine failure, washing machine runs over,
Exercises or	car brake failure, remote for VCR fails, etc.)
Scenarios (Guidolinos)	2. Given a scenario, preferably that reflects an industry within your area, use troubleshooting steps to identify symptom(s), identify cause(s) and develop corrective action(s) for a process upset
(Guidelines)	symptom(s), identity cause(s) and develop conective action(s) for a process upset.
	Note to Instructor: The following list suggests potential problems.
	a) Equipment problems
	Pump cavitation
	Filter plugging
	Loss of heat transfer
	Tube failure
	Agitator failure
	Power failure to equipment
	Coupling failure
	Loss of cooling
	• Etc.
	b) Instrument problems
	Loss of instrument air
	Plugged air filter

TOPIC	OBJECTIVES
	Wet instrument air supply
	Computer failure
	Loss of power to transmitter
	Calibration problems with transmitter
	Break in thermocouple
	Short in thermocouple
	Incorrect valve position
	I/P calibration and/or failure
	Blocked in transmitter
	• Etc.
	c) Process problems
	Composition change
	Contamination
	Inhibitor present or absent
	Change in feed ratio
	Bad or spent catalyst
	Loss of feed
	Weather-related changes
	Incorrect valve alignment
	• Etc.