Integrating Mobile, Virtual, Simulation and Hands-On Training

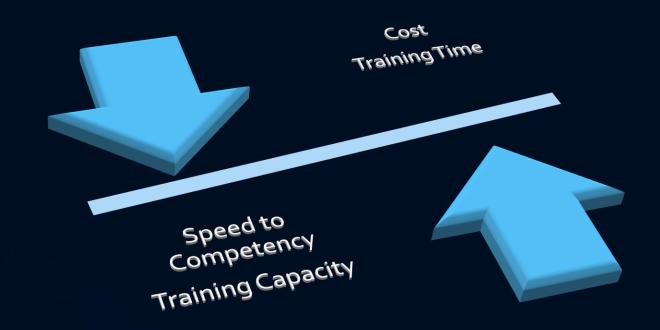
TO IMPROVE OPERATIONS WORKFORCE DEVELOPMENT

Simtronics Overview

- Headquarters in Little Silver, NJ
 - Started in 1992; Celebrating 25+ Years
- DSS-100 , Dynamic Simulator System
- PSU-100, Performance Scoring Utility
- SPM Series, Standard Process Models
- CPM Series, Custom Process Models
- VFO Series, Virtual Field Operator

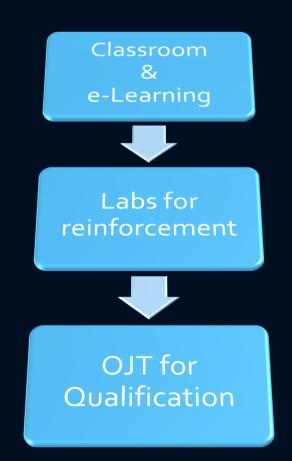
Systran Overview

- Headquarters in Houston, TX
 - Established in 1978
- Digital transformation of procedures and training to deliver improved competency, safety and efficiency
- Experienced team of operations, maintenance, process safety, instructional design, technical writing, digital media and project management professionals
- Focus on energy and hydrocarbon processing industries



Workforce Development Challenges

- Skilled workforce shortage
 - Retirements/great crew change
 - Petrochemical sector growth
 - Revitalization of upstream
- Insufficient institutional capacity
 - Long spool up for capacity building
 - Need experienced training staff
- Advancement without knowledge and skills
 - Operator progression with minimal experience



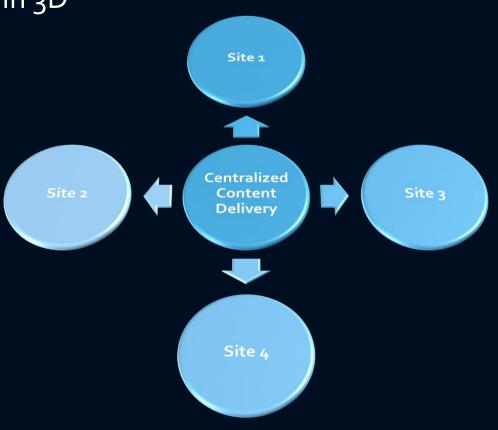
Traditional Workforce Development Model

- Foundational knowledge
 - Instructor-led training/e-Learning
- Labs reinforce concepts
 - Part/task trainers
 - Miniature equipment
- Structured On-the-Job Training
 - Follows completion of classroom work
 - Limited opportunities to apply concepts
 - Retention loss due to elapsed time

Integrated Workforce Development Model

- Focus on specific competencies and/or work tasks
 - Immediate application of knowledge and skill
 - Rapid assimilation of learning
 - Relate to critical concepts (safety)
- Incorporate real-world experiences
 - Practice
 - Troubleshooting
 - Performance Demonstration
- Early task qualification

Technology Aids Knowledge and Skill Acquisition

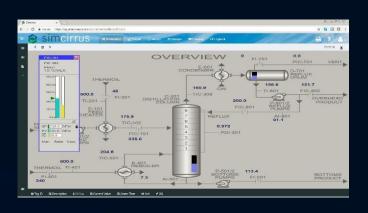

	Identify/ Locate	Explain/ Relate	Operate/ Maintain	Troubleshoot	Communicate/ Teamwork
AR/VR	16	16	14	16	
Simulation		16	16	16	16
Hands-On	16	16	16	16	16
Mobile					

Building Learning Experiences

- Visualization of Equipment and Processes in 3D
- Cloud-based Simulation
 - Extend reach
 - Maximize SME resources
- Integrated, Realistic Field Operations
 - Immersive Virtual Reality
 - Simulated Hands-On Before OJT
- Simple and complex problems
- Measurement of performance, feedback
- Long term retention of knowledge and skill

Engage with Content

- Relate theory to physical world
- Interact with equipment
- Visualize operation
- Use in the classroom, lab or field
- Interact between simulator and virtual plant to learn procedures, scenarios, troubleshooting

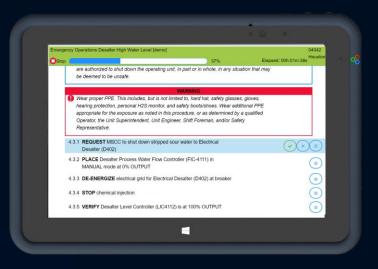


Simulation in the Cloud

- Understanding cause and effect
- Procedure practice
- Troubleshooting scenarios
- Classroom, Lab
- Individual, group and team
- Dispersed workforce

Industrial Equipment

- Simulates industrial environment/actual equipment
- Requires motor skills and use of tools
- Task practice/demonstration of performance
- Classroom/Lab
- Basic Operator Training
- Life Critical Skills Training



Real-time Information

- Information at the moment of need
- Job aids, technical information, procedures
- Reference, refresher
- Just-in-Time Learning
- Micro-Learning

- Learners lose 70% of learning if not applied or practiced
- Visualization is a critical aspect to building an understanding of the equipment and tasks
- Time-to-competency is reduced when learning is efficient
- Cloud-based simulation and virtual reality allow learners to apply knowledge, practice skills and demonstrate proficiency before arriving at the job-site
- Mobile technology provides anywhere/just-in time access to training, documentation and procedures to support performance on-the-job

Questions

David Hirsch dhirsch@systraninc.com

Thomas Judge tjudge@simtronics.com

